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Abstract

The increasing ease with which massive genetic information can be obtained from patients or healthy individuals has
stimulated the development of interpretive bioinformatics tools as aids in clinical practice. Most such tools analyze
evolutionary information and simple physical–chemical properties to predict whether replacement of one amino acid
residue with another will be tolerated or cause disease. Those approaches achieve up to 80–85% accuracy as binary
classifiers (neutral/pathogenic). As such accuracy is insufficient for medical decision to be based on, and it does not appear
to be increasing, more precise methods, such as full-atom molecular dynamics (MD) simulations in explicit solvent, are also
discussed. Then, to describe the goal of interpreting human genetic variations at large scale through MD simulations, we
restrictively refer to all possible protein variants carrying single-amino-acid substitutions arising from single-nucleotide
variations as the human variome. We calculate its size and develop a simple model that allows calculating the simulation
time needed to have a 0.99 probability of observing unfolding events of any unstable variant. The knowledge of that time
enables performing a binary classification of the variants (stable-potentially neutral/unstable-pathogenic). Our model
indicates that the human variome cannot be simulated with present computing capabilities. However, if they continue to
increase as per Moore’s law, it could be simulated (at 65◦C) spending only 3 years in the task if we started in 2031. The
simulation of individual protein variomes is achievable in short times starting at present. International coordination seems
appropriate to embark upon massive MD simulations of protein variants.

Key words: genetic interpretation; mutation-effect prediction tools; single amino acid variation; molecular dynamics
simulation; protein stability; large-scale phenotype prediction

Introduction
Many diseases have a genetic component. The Online Mendelian
Inheritance in Man (OMIM) database (https://www.omim.org/)
reports so far (last update: 16 June 2019) 7129 phenotypes
associated to genetic disorders in humans, which can be passed
on from generation to generation. Over the last decades, an

increasing number of disease-causing mutations have been
identified thanks, in part, to efforts by international collaborative
large-scale sequencing initiatives such as the Human Genome
Project [1, 2], the Human Variome Project [3], the ENCODE

Project [4], the HapMap Project [5] or the 1000 Genomes Project
[6] among others, which have paved the way to more recent
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Table 1. Summary of up-to-date (16 June 2019) statistics for Homo sapiens provided by the main biological databases referred in this manuscript

Database (URL) Feature Entries or report

Online Mendelian Inheritance in Man (OMIM) (https://www.omim.org) Genetic disorders 7129
NCBI’s dbSNP Short Genetic Variations Database (https://www.ncbi.nlm.nih.gov/snp) SNPs 605 048 595
RCSB Protein Data Bank (https://www.rcsb.org/) 3D protein structures 1559
Ensembl (Human GRCh38.p12) (https://www.ensembl.org/Homo_sapiens/Info/Annotation) Protein-coding genes 20 465
Human Gene Mutation Database (HGMD Professional 2019.1) (http://www.hgmd.cf.ac.uk/ac/
index.php)

Mutations 256 070

initiatives, e.g. the Cancer Genome [7] and the 100,000 Genomes
[8] projects. According to the NCBI’s dbSNP Short Genetic
Variations database (build 151) [9], ∼1 billion uniquely mapped
(non-redundant) human genetic variations have been reported,
including single- and multiple-base variations, insertions and
deletions (indels) and short tandem repeats. Advances in high-
throughput sequencing techniques [10–12] have enabled whole-
exome sequencing (WES) [13] and genome-wide association
studies (GWAS) [14] on humans [15–17] and a number of
model species [18–21], contributing to a better understanding
of how single-nucleotide variations (SNVs), the most frequent
variations present in DNA [22], are related to diseases. An
accurate interpretation of SNVs constitutes a major challenge in
genetics and health.

Genetic variation, disease, protein structure
and the proteome
Genes contain the information required to produce proteins,
the main components of the cellular machinery, combining 20
essential building blocks called amino acids. Changes in the
amino acid sequence of proteins arise from variations in protein-
coding regions of the DNA, including synonymous and non-
synonymous single-nucleotide variations (sSNVs and nsSNVs,
respectively), as well as indels and multi-nucleotide variations
(MNVs). Regarding their effects on individual phenotypes,
frameshifts and non-sense SNVs are likely to produce null or
totally dysfunctional proteins. The effects of missense nsSNVs,
in-frame indel variations or MNVs are more difficult to assess.
They may range from not affecting protein function to causing
severe dysfunctionality of the encoded protein variants, but they
can also enhance the original function of the protein [23, 24] or
even drive the acquisition of a new one [25]. Missense and in-
frame indel variations may affect not only protein folding and
the stability of the native protein conformation [26–28] but also
protein expression [29], post-translational modification [30, 31]
or binding affinity [32–34]. Typically, missense variations are
described in a binary way as being deleterious/pathogenic/
damaging or tolerated/neutral/benign. In monogenic disorders,
deleteriousness tends to be associated to loss of structural
stability [35, 36] while impaired binding interactions with
partners or cofactors [34, 37, 38] might be frequent in more
complex diseases where disease-associated variations may not
affect protein stability so often [39].

As the three-dimensional structure of a protein determines
its function, the availability of protein structures solved at
atomic level can greatly facilitate understanding which muta-
tions impact protein function and why [40–42]. Knowledge of the
structure allows to perform a variety of in silico analyses, such as
the calculation of structure-based properties [43, 44], the study
of protein dynamics using methodologies such as molecular
dynamics (MD) simulations [45] or the combined application

of molecular docking [46] and MD approaches [47] to uncover
functional issues related to protein/cofactor or protein/protein
interactions. Advances in resolution of 3D protein structures
over the last decades, including the efforts by international
consortia [41, 48, 49], have gathered a wealth of structural
information that has laid the foundation for proteome-wide
structural analyses. To date (16 June 2019), 149 518 struc-
tures including wild-type proteins, mutated variants, protein
domains, protein/cofactor, protein/protein and protein/nucleic
acids complexes are available in the Protein Data Bank (PDB)
(https://www.rcsb.org/stats/growth/overall). Within this wealth
of structural information, human proteins are the larger group.
Still, those solved at atomic resolution (around 1559) constitute
a small percentage of the estimated number of human genes
(∼20 400, see Table 1), which in turn represents a lower limit to
the still unclear size of the human proteome [50, 51].

Human genetic variation space: the variome
The combination of technological advances with GWAS has
allowed large-scale identification of human variations (∼90%
corresponding to SNV) (https://www.ncbi.nlm.nih.gov/snp/?
term=human). A subset of them, responsible for human
inherited disease, is collected in the Human Gene Mutation
Database (http://www.hgmd.cf.ac.uk/ac/index.php) which, in
its latest professional version as of June 2019, reports 256 070
entries. Over 57% of these variations correspond to SNVs
(missense/nonsense). Most probably, they only account for a
small fraction of all clinically relevant genetic variants present in
human genomes. Although mutations associated with complex
diseases seem often to arise in non-coding regions [52], most
well-annotated genetic diseases are linked to coding variants
[53], which—fortunately—are the more amenable to structural
analysis. Knowing the size of the human genetic variation
space may be useful. If the functional implications of all
possible human nsSNVs could be accurately calculated, the
interpretation of those already reported and of those being found
in the future would be greatly speeded up. In this respect, the
number of nsSNVs that can exist, and therefore be found sooner
or later in a given gene, can be computed easily. In previous
work [54], we showed that a small 37-residue-long repeat of the
LDL receptor could give rise to 227 nsSNVs, including many
that had been related to familial hypercholesterolemia. The
number of hypothetical nsSNVs for a given gene product can
be calculated from the number of possible nsSNVs associated to
each codon (nsSNVci) and the absolute frequencies of codons in
the secondary transcript (see Supporting Information Table S1).
Likewise, the complete nsSNV space for all the human genes,
human_nsSNVome (HumanV for short), can be accurately
calculated from the nsSNVci values together with the absolute
frequencies of codons in coding regions, fci.

HumanV =
∑61

i=1
fci ∗ nsSNVci (1)
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Those frequencies can be obtained from the HIVE online
resource [55] (see Supporting Information Table S2) and the
canonical protein sequences downloaded from UnitProt after
a search filtered by ‘reviewed:yes AND organism: “Homo sapiens
(Human) [9606]”’). A total of 66474822 nsSNVs are estimated this
way, which will be referred to as the theoretical human non-
synonymous single nucleotide variome (t-human_nsSNVome;
t-HumanV, for short) as opposed to the sub-space of it that
has been already described, which will be referred to as the
d-HumanV.

Protein interaction space: the interactome
Amino acid variations occurring at hotspots of protein binding
interfaces can dramatically affect binding affinity. The STRING
database [56, 57] includes 19 257 human proteins for which pro-
tein–protein network connections have been reported (out of the
∼20 400 human genes reported so far). In humans, each protein
participates in about 3–10 protein–protein interactions (PPIs)
[58]. In this sense, in-depth characterization of protein–protein
interaction networks (PPINs) is crucial to understanding cellular
pathways and devising strategies to effectively treat human
illnesses [59–61]. The complete set of PPI taking place in a defined
biological context (organelle, cell, organism, etc.) constitutes its
interactome. Large-scale PPI screening techniques, in particu-
lar the yeast two-hybrid method (Y2H) [62], have allowed to
uncover complete interactomes in a number of species including
humans [63]. Very recently, proteome co-evolutionary methods
have also shown an impressive capacity of working with millions
of protein pairs to systematically identify PPIs on the whole-
proteome scale [64]. In this context, current estimations of the
human interactome range from 130 000 [65] to ∼650 000 PPI [66],
excluding trans-organism PPI (relevant for infectious diseases).

A growing number of computational tools used for prediction
of PPI and PPIN have been released over the last few years,
e.g. iLoops [67] HOMCOS [68], COTH [69], InterPreTS [70] and
PRISM [71]. Also, databases storing annotated and/or predicted
PPI are currently available, e.g. DIP [72], BIND [73], PrePPI [74]
and STRING [75]. One way to identify key residues involved
in PPI, to then establish mutation/function relationships, is to
focus on the identification of protein–protein interaction sites
(PPISs). Prediction of PPIS is facilitated by recently developed
computational resources such as predPPIS [76] and IntPred [77],
as well as by many others previously released [78]. The algo-
rithms implemented in PPI/PPIN and PPIS predictive tools utilize
methods based on protein sequence data, structure data or a
combination of these (hybrid approaches). Despite the analytical
progress condensed in those applications, which use a variety of
mathematical–statistical methods (e.g. support vector machine,
random forest, neural network, Bayes, hidden Markov model),
the accuracy achieved barely reach 80% in the best cases [67–71,
76–78]. This is likely due to the still very low number of struc-
tures of protein complexes available in the PDB. Therefore, the
applicability of this type of predictive tools to clinical diagnosis
and therapeutics is still limited.

Approaches in use for the interpretation of
mutation effects at the protein level
Much of what we know about mutation-driven effects on pro-
tein stability, folding or protein–protein interactions has been
revealed through mutational studies based on individual amino
acid changes. Recently, deep mutational scanning (DMS), a high-

scale DNA-sequencing-based method, is becoming an invaluable
tool for experimental evaluation of missense variants [79–81].
DMS aims at testing in a single, multiplexed assay the effects of
hundreds or thousands of variations by focusing on the presence
of a target property (e.g. cell growth, presence of fluorescent
reporter or ligand binding) in a large library of variants [79–81].
However, the proteome-wide DMS-based approach faces diffi-
culties, such as the need for specific assays or the complexity
of the equipment needed.

The interpretation of mutation effects at the protein level can
also be approached in a predictive scenario using computational
methods [22, 82]. Many computational tools have been developed
over the last 20 years for the prediction of mutation effects
(mutation-effect prediction tools, MEPT), some of which have
become quite popular (e.g. SIFT [83–86], PolyPhen2 [87] or CADD
[88], see Table 2).

As PPI/PPIN/PPIS prediction tools, most MEPT utilize methods
based on evolutionary conservation of sequence (homology),
structure and structure-derived data (structure-based) or a
combination of the two (hybrid approaches). Some (meta-
predictors) combine outputs from several MEPTs to provide
consensus scores (Figure 1 and Table 2). Representing each
of these groups, SIFT (homology) is based on ‘the degree of
conservation of amino acid residues in sequence alignments
derived from closely related sequences, collected through
PSI-BLAST’ [85]; HoTMuSiC (structure-based) ‘uses standard
and temperature-dependent statistical potentials combined
with an artificial neural network to predict the change in
melting temperature �Tm upon point mutations’ [89]; Polyphen2
(hybrid) ‘uses eight sequence-based and three structure-based
predictive features which were selected automatically by an
iterative greedy algorithm’ [87]; and Meta-SNP (meta-predictor)
provides a consensus score based on SNAP, SIFT, PhD-SNP
and PANTHER outputs [90–92]. MEPTs based on structural data
often try to calculate ��G, the change in free energy (i.e. in
conformational stability) brought about by a single-amino-acid
variation. For a comprehensive review on protein stability and
folding principles, or for an explanation of the way to determine
experimentally ��G, see references [93] and [94], respectively.

Although most existing MEPTs only provide predictions for
single-amino-acid variants (SAVs), some recently developed
applications, e.g. PROVEAN [95], are already able to generate
predictions for multiple-amino-acid substitutions, insertions
and deletions. While this progress is encouraging, and most
published MEPTs are freely available, the maximum accuracy
achieved by these methodologies so far (∼80–85%) [96] strongly
limits their usage in clinical diagnosis. One of the major caveats
of current MEPTs’ development is the limited size of the datasets
available for training and validating these tools. In this context,
DMS studies [79–81] and novel developments [97] are expected
to provide MEPTs’ community with validation and training sets
larger than those currently available, which will boost the next
generation of MEPTs.

Protein dynamics in interpretation of
mutations
Perhaps due to the limited number of human protein structures
available at the beginning of the MEPT era, most of these appli-
cations rely heavily on protein sequence data analysis (Table 2).
Even MEPTs using hybrid approaches commonly include more
sequence-based prediction features than structure-based ones.
On top of that, many of the structure-based features selected as
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Figure 1. Overview of the methods underlying Mutation-Effects Prediction Tools (MEPTs). Homology methods rely on evolutionary conservation of protein sequence;

structure-based ones utilize 3D structure or 3D-structure-derived data to train their algorithms (SVM: support vector machine; NN: neural networks; HMM: hidden

Markov models); hybrid methods combine both sequence conservation and structural data; and meta-predictors obtain consensus scores based on outputs by individual

MEPT.

predictors in MEPTs are obtained from either homology mod-
els or directly predicted from sequence rather than from true
structural information [98–107]. This issue is being addressed
in more recently developed MEPTs with the introduction of
predictive features based on known 3D protein structures and on
the usage of larger training sets including experimentally solved
3D protein structures. Nevertheless, such efforts have not led to
significant increases in MEPTs’ accuracies so far [108].

Looking for new approaches to enhance MEPTs’ reliabilities,
researchers have begun to exploit the availability of 3D pro-
tein structures to include dynamic aspects of proteins in the
prediction of mutation effects [40, 47, 54, 109–120]. As protein
function is defined by both structure and dynamics [121–123],
dynamic patterns have begun to be recognized as descriptive
of proteins [124, 125]. To our knowledge, DynaMut [118] and
ENCoM [112] are the only available general (non protein-specific)
MEPTs that include assessment of protein dynamics for pre-
dicting the impact of mutations on protein stability. Those two
MEPTs apply normal mode analysis (NMA) simulations [126],
a coarse-grained version in the case of ENCoM. According to
the authors, considering destabilizing mutations alone, Dyna-
Mut comparably performs to methods such as mCSM-NA (the
current version of mCSM [127]), I-mutant3.0 (the current version
of I-mutant2.0 [128]) and DUET [129] and outperforms ENCoM
[112] and SDM2 [130]. On the other hand, ENCoM’s authors
compared this tool to several existing methods, i.e. FoldX [131],
HoTMusic (an improved version of PoPMusic [132] whose current
last version is PoPMuSiCSym [133]), AUTO-MUTE [134, 135] and
I-mutant2.0 [128], and concluded that ‘ENCoM proved to be the
most self-consistent and least biased method’ but ‘not the best
overall predictive method when considering both stabilizing and
destabilizing mutations together’ [112]. Overall, even though
many available MEPTs may show overestimated accuracies and
bias, and comparisons between them by authors are at times
misleading, DynaMut and ENCoM do not seem to overcome the
maximum performances obtained by the best predictor with
which they are compared. One reason for this may be that,
although NMA-based methods add dynamics elements to static-
structure-based methods, they do not sample sufficiently the
conformational landscape. Also of note, the NMA simulations in
those methods are performed in absence of water, disregarding
fundamental solvation interactions.

MD simulation is a powerful, reliable tool used to study pro-
tein stability, dynamics or function [136, 137]. Very recently, its
usefulness in accurately calculating protein folding energetics
has been shown [138]. The possibility offered by MD simula-
tion to explore the conformational energy landscape of proteins
in very realistic settings, including explicit solvent molecules
and specific solution conditions (e.g. temperature, pH, concen-
tration, pressure), alongside the continuous progress made in
related areas, such as the development of force fields [139],
water models [140] and next-generation graphics processing
units (GPUs) (high-performance computing), makes this tool a
logical choice to address the analysis of SAV. In this context,
two different situations can arise when MD is used to simulate
protein mutation effects. In the infrequent case where both the
native and mutant structures are known, unfolding simulations
can be performed taking the corresponding structural models
as the starting points. In the usual case where only the wild-
type structure is available, a starting model of the mutant struc-
ture should be constructed by modeling the single-amino-acid
substitution. Then, the evolution in time of the modeled mutant
structure would be simulated by MD. We refer to this approach as
relaxation molecular dynamics (rMD) simulations because they
describe the relaxation of the protein native structure after the
introduction of a mutation.

Relaxation molecular dynamics
Given the artifactual nature of the starting model, the pertinence
of this approach may be arguable. Nevertheless, a number of
rMD-based approaches have been used to study mutation effects
on phenotypes in the last few years [47, 54, 110, 116, 117, 119].
Many of these works showed quite good correlations between
their predictions and experimental data and, at the same time,
allowed to extract meaningful insights underlying the mech-
anisms through which mutations impair protein function. In
one of these works, a web-based tool, ANGDelmut, used for the
prediction and analysis of functional loss mechanisms of dele-
terious mutations related to amyotrophic lateral sclerosis (ALS),
has been made available (http://bioschool.iitd.ernet.in/DelMut/)
[117]. This is—as far as we know—the only currently available
tool for prediction of SAV effects relying on a classical atomistic
MD approach. However, ANGDelmut is implemented only for the
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analysis of angiogenin, the target protein in ALS. Simulations
performed in [117] use an implicit-solvent MD approach that is
faster than explicit-solvent ones but may not describe in full the
important solvation effects associated to the protein dynamics.

The promising results obtained in works where classical
atomistic MD simulations with explicit water were performed
[47, 54, 110, 116, 119] reinforce the idea that using MD-based
methods under realistic conditions allows to accurately model
and reveal the complexity of the structural changes associated
to point mutations in proteins. In previous work, we followed this
approach to explore the complete t-HumanV of the low-density
lipoprotein receptor (LDL-r) LA5 domain by performing all-atom
rMD simulations in explicit solvent. The LA5 domain is a 37-
residue repeat that plays a key role in the uptake of LDL particles
from the blood plasma and in their release in the endosome.
The LA5 domain concentrates the highest rate of mutations
reported as disease-causing for familial hypercholesterolemia
(FH) [54]. A stability analysis based on principal component
analysis (PCA) of MD trajectories, combined with PPI information
of the binding site [141, 142], allowed to satisfactorily predict the
pathogenicity of 49 out of the 50 FH mutations known by the
time and to obtain a higher true positive rate than that provided
by PMUT, Condel and PolyPhen2. The reliability of this approach
raises hopes that using MD-based methodologies to address the
prediction of SAV’s deleteriousness will greatly contribute to
obtain higher accuracies than those shown by currently avail-
able MEPT. Likewise, it demonstrates that performing integrative
approaches capable of exploiting PPI information is a way to
address the prediction of mutation effects in a reliable manner,
which is required if prediction is to be applied to diagnosis. In
the above example [54], short MD simulations (20 ns produc-
tive phase) sufficed to capture structural differences between
wild-type-like and pathogenic mutant conformational ensem-
bles and so to unveil the (un)compatibility of the different vari-
ants with the native conformation of the small, 37-residue LA5
domain. However, it is quite likely that the simulation time span
required to observe structural disruption in rMD trajectories of
larger proteins will be larger or may vary considerably depending
on protein size [143], on the intrinsic dynamics determined
by protein folds or on specific folding/unfolding mechanisms
[125, 143–145]. Furthermore, the PCA-based analysis method
used in the study of the LA5 domain may or may not be adequate
for larger proteins.

Problems and challenges to address
The unavailability of MEPT integrating MD simulations onto SAV-
predictive approaches is clearly linked to the high computational
cost of the task. The still insufficient computing power and the
lack of novel algorithms that could further accelerate full-atom
MD simulations constitute a challenge for the expansion and
generalization of their use for massive prediction of SAV’s dele-
teriousness. Many approaches have been suggested or imple-
mented in order to speed up atomistic MD simulations. Temper-
ature or pressure raising [146–148], the inclusion of molecules of
denaturing agents such as urea [149, 150] and the application of
force [151, 152] are options often chosen in simulations thought
for unfolding. From a more general perspective, the use of higher
or mixed time-step algorithms [153], split GPU–CPU algorithms
[154], force fields and MD programs optimized for GPU architec-
tures [155], special-purpose hardware designed specifically for
MD simulations (a prominent case being the Anton platform
[156]), implicit solvent [157] or the incorporation of multiscale
modeling algorithms [158–160] may also help. Such advances

have not been systematically implemented in SAV-predictive
approaches, and at present, the computational cost associated
to using rMD to provide accuracy to genetic diagnostic in a
variome-wide scale continues being too high. Yet, the increasing
number of SNVs being identified and of proteins with known 3D
structure available argues for the consideration of that goal as a
worthy endeavor claiming for new concerted efforts.

There is also a challenge in performing quantitative analy-
sis of MD trajectories in simulations of protein folding/unfold-
ing events [161], specially in large-scale simulation projects. At
present, a broad set of analyses intended for detecting pro-
tein conformational changes in MD trajectories are available,
which often focus on basic root mean square deviations (RMSDs)
and root mean square fluctuations (RMSFs) of atomic positions,
gyration radius, secondary structure content, template modeling
score (TM score), principal component analysis (PCA), percent-
age of native contacts, solvent-accessible surface area (SASA),
hydrogen bonds number, phi and psi backbone angles, distances,
etc. [162–164]. Albeit promising results have been obtained using
these analysis methods, as in the aforementioned study on the
LA5 domain [54], it is difficult to establish robust metrics to
quantitatively assess conformational changes from trajectory
analyses and, therefore, to accurately determine the impact of
mutations on protein stability. In this context, there is a develop-
ing research field relying on the so-called higher-order statistics
methods wherein the semi-automated analysis of large sets of
data, e.g. from long MD simulations, is intended to efficiently and
accurately detect conformational changes in molecular ensem-
bles [165]. As this area is still in an early stage of development, a
close collaboration between structural biologists, programmers
and developers of MD tools is needed.

While protein structure prediction methods continue to
improve [166], a high-resolution 3D all-atom protein structure
remains the starting point of choice required to reliably
perform full-atom MD simulations. In this sense, the current
availability of 3D structures of human proteins still constitutes
a limitation to the expansion of MD usage in SAV-predictive
approaches. Related to this is the question of how many
proteins constitute the human proteome and, therefore, how
many simulations need to be done to analyze the complete t-
HumanV once their structures are solved. The answer is not
trivial. Although the Human Genome Project revealed a lower-
than-anticipated number of genes, ∼20 400, a much higher
number of protein species (proteoforms) can be produced
in an individual from alternatively spliced RNA transcripts
and from post-translational modifications [51, 167]. Besides, a
variety of additional chemical entities including, for instance,
cofactors or ions, as well as acetylated, phosphorylated and/or
methylated residues, may appear in the scene, which increases
the complexity of the task.

Estimation of computational resources needed
to perform rMD simulations on the complete
HumanV at 25◦C
Performing rMD for the whole t-HumanV, as it has been defined
in a previous section, is a formidable task, and the time required
with present and foreseeable computational capabilities should
be estimated in order to decide when embarking upon the calcu-
lation would be appropriate. As explained above, the t-HumanV
comprises 66 474 822 nsSNV. Thus, the real time (T) required to
simulate all the variants arising in the 20 410 different proteins
(canonical transcripts) and being able to provide an accurate
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Figure 2. Running times (in days · TFlop/ns) versus number of residues (nri)

fitting for nine proteins (see Table S3) simulated (three replicas of each protein)

using the CHARMM27 force field, the TIP3P water model, an octahedron solvation

box (with 1 nm minimum distance between protein surface and the end of the

solvation box) and 48 Intel Xeon E5-2680v3 2.5GHz cores. Values indicated next

to the points were calculated by dividing the radius of gyration of the protein by

its number of residues (a structural sparseness measure, Table S3). These values

decreasing with protein length leads to a lower number of water molecules per

residue needed for the solvation box of larger proteins. The inset displays the

fitting equation, the fitted parameters, their standard errors and the squared

Pearson coefficient.

binary prediction can be expressed as

T =
∑20 410

i=1

∑nri

j=1
nsSNVcj × ti

TFlops
× τxunf (2)

where is the number of amino acid residues of protein i, ti is
the running time required to simulate a unitary time span (e.g.
1 ns) of protein i using 1 TFlop of computing power, TFlops is
the number of TFlops used in the calculation and τ xunf

is the
simulation time span (in ns) required to arrive to a given molar
fraction (xunf) of unfolded molecules (or to have a probability xunf

of observing unfolding in a single simulation, see below).
To obtain an estimation of the term ti in Equation 2, we have

simulated nine roughly spherical globular proteins, containing
from 60 to 900 residues (see Supporting Information Table S3).
The simulations (300 ns long; three replicas of each protein) have
been done using octahedral solvation boxes affording for a 1 nm
minimum distance from protein surface atoms to the end of the
solvation box, using the CHARMM27 force field, TIP3P waters and
48 Intel Xeon E5-2680v3 2.5GHz cores. Values of ti are processor-
type-independent as they are calculated for 1 TFlop (the number
of TFlops is explicitly introduced in Equation 2). These val-
ues as a function of protein length (Supporting Information
Table S3) are shown in Figure 2, fitted to an exponential function
(Equation 3):

ti = t0 + A × eB×nri (3)

where t0, A and B are fitting constants. The reasonably good fit of
the experimental data to this simple function allows to estimate
the time needed to simulate 1 ns for the different proteins of
the proteome as: ti = 0.061 − 0.058e−0.002nri , although proteins
with non-spherical global shapes may require longer times due
to the increase in the number of water molecules conforming
the solvation shell in the rMD simulations.

Figure 3. Correlation plot between protein conformational stability and the

logarithm of unfolding half-lives showing a linear fit and the fitting parame-

ters. The protein conformational stabilities have been calculated from folding

and unfolding rate constants (�Gunf = −RT × ln (ku/kf)) of 89 two-state proteins

(Manavalan et al. dataset) normalized at 25.0◦C. [168]. Half-lives have been cal-

culated as τ0.5 = −ln 2/ku. The inset displays the fitting equation, the fitted

parameters, their standard errors and the squared Pearson coefficient.

When it comes to the term τ xunf
in Equation 2, we have

used normalized experimental data of folding (kf) and unfolding
(ku) rate constants of 89 two-state proteins [168] to calculate
their conformational stabilities (�Gunf) from the �Gunf = −RT × ln
(ku/kf) relationship. Then, we have obtained an approximately
linear correlation between the conformational stabilities of the
protein and the logarithm of their half-lives of unfolding (τ 0.5)
(Equation 4):

�Gunf = 3.97 + 0.74 × log τ0.5 (4)

indicating that more stable proteins take longer to unfold (see
Figure 3). If conformational stabilities directly determined by
chemical denaturation using the linear extrapolation method
are used instead for calculating the correlation, a similar equa-
tion yielding slightly shorter unfolding times can be obtained
(Supporting Information Figure S1).

Furthermore, the time required (τ xunf
) to obtain a given frac-

tion (xunf ) of unfolded molecules starting from a population of
fully folded proteins can be described as

τxunf = −τ0.5 × ln (1 − xunf) / ln 2 (5)

The conformational stability of a protein determines the per-
centage of folded molecules at equilibrium. For stable proteins,
the percentage is close to 100%, and it decreases as the protein
becomes less and less stable. The stability of most functional
folded proteins studied ranges from 3 to 15 kcal/mol [169]. A
protein with a low stability of 3 kcal/mol still has, at 25◦C, 99.4%
of the molecules folded at any time. According to Equation 4, the
average τ 0.5 for a protein in the high stability range (15 kcal/mol)
is of 25 ± 7 million years (Myr), while that for one in the low
stability range (3 kcal/mol) is of only 50 ± 14 ms. A protein that,
due to a SNV, becomes destabilized to the point of having its
function compromised will likely exhibit a lower conformational
stability [170]. If we take 2 kcal/mol as the stability threshold
below which a protein is not stable enough to perform its cellular
function (3% of its molecules will be unfolded at 25◦C at any
moment), the time needed to observe the unfolding of individual
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Figure 4. Histogram of estimated running times (in days·TFlop/ns) for all the

proteins encoded in the human genome. The red line is the mean of the

distribution (0.0357), and the navy blue line is the median (0.0358). The running

time values were calculated with Equation 3 (see Figure 2).

protein molecules in experiment or simulation can be similarly
calculated from Equation 4. As it turns out, half of the molecules
of protein variants with stabilities of 2 kcal/mol or less will have
experienced unfolding events in 2 ± 0.6 ms. Thus, if 2 ms of a sin-
gle molecule of such destabilized protein variant are simulated
at 25◦C, the probability of observing unfolding will be of just 0.5.
Equations 4 and 5 enable to calculate the average time needed
for a given fraction of a protein of a given stability to become
unfolded. Following with the example, 9 out of 10 molecules
of that protein will be observed to unfold in 7 ± 2 ms and, in
14 ± 4 ms, 99% of the molecules will have unfolded. Therefore, if
a single copy of the protein is simulated for 14 ms, the probability
of observing its unfolding will be of 0.99. This 2 kcal/mol stability
threshold is certainly arbitrary and should be only taken as a
reasonable average value. This is so because protein variants
causing amyloid-related diseases may become deleterious even
if they display higher stabilities, as a small fraction of denatured
molecules may initiate and drive the aggregation. On the other
hand, proteins causing disease by a loss-of-function mechanism
may provide some functionality to the cell even having stabilities
below that level. It should be also borne in mind that some
proteins display non-cooperative, i.e. non two-state, unfolding
equilibria [94]. For those proteins, which may abound among the
large ones, it is the unfolding of the weakest energetic domain
[171] rather than that of the entire protein that should be moni-
tored in the simulations. The weakest domain will correspond in
most cases to the structural domain containing the deleterious
variation, and it is the domain to which the 2 kcal/mol stability
threshold applies.

Combining Equations 1, 2 and 3 and taking into account
the length of the 20 410 different proteins of the human
proteome (which can be obtained from the canonical sequences
annotated in UniProt, see Supporting Information Figure S2),
the average time needed to simulate a single protein for
1 ns is ti = 0.0358 days·TFlop (the distribution of ti values
for the different proteins is shown in Figure 4). Thus, the
approximate time needed to simulate 1 ns of the entire
t-HumanV is 731 ± 306 days·TFlop. This means that, in order
to have a 0.99 probability of detecting any destabilized SAV with
conformational stability below 2 kcal/mol, 29 Myr·TFlop would
be required.

Differently to other MEPTs (e.g. FoldX, Rosetta or I-Mutant),
the approach proposed here is based on the capabilities of MD-
trajectory analysis to reliably detect conformational changes
associated to very low conformational stability, Therefore, it does
not allow, nor it tries, to compute ��G values associated to
mutations. However, recent developments in higher-order statis-
tics methods to fine tune semi-automated analysis of long MD
simulations [165] together with improved force fields [138] might
allow in the future the quantitative analysis of conformational
changes in MD trajectories, bringing an extra added value to MD-
based predictive methods.

When should we embark upon this endeavor?
The very long time (29 Myr·TFlop) calculated above, which is
beyond present computing capacity, is expected to decrease in
the coming years both due to increased computing power of
the CPUs and to improved efficiency of the MD-simulating algo-
rithms. Taking a conservative approach, we may consider that
the first factor will be the more relevant one and may accordingly
disregard the improving contribution of the second factor. Then,
assuming that the evolution of the computing power of CPUs
will follow Moore’s law [172], the time needed in the foreseeable
future (at year X) to compute 1 ns of the t-HumanV becomes

t@year X = t@2019

2(X−2019)/2
(6)

Combining Equations 2, 4 and 6 yields Equation 7 which
allows to estimate the time required (TX) to simulate the com-
plete human variome using an a priori defined computer power
and beginning the simulations at year X.

TX =
∑20410

i=1

∑nri

j=1

nsSNVcj × (
0.061 − 0.058e−0.002nri

)

TFlops × 2(X−2019)/2
× τxunf (7)

If, as explained above, τ xunf
is set as 14 ms (to have a 0.99

probability of observing the unfolding of protein variants with
stability below 2 kcal/mol in any rMD simulation), we may
estimate how long it would take to simulate the complete
HumanV to identify any severely destabilizing mutation.
Equation 7 indicates that beginning at present, 2019, and using
the total TFlops allocated in the top 10 supercomputers in the
TOP500 ranking (https://www.top500.org/) plus those accounted
in the project of distributed computing Folding@Home (606 826
TFlops, see Table 3), it would take around 193 000 years to
complete the simulations. However, if we began the simulation
in 2051, only 2.9 ± 0.5 years would be required using a similar
number of supercomputers/projects of the time (see the blue
curve in Figure 5A, and Table 3). Year 2051 would be the optimal
moment to begin an efficient international effort to simulate
t-HumanV as it affords the earliest date of completion of the
task (Figure 5A).

For the more modest task of calculating the entire variome of
individual human proteins using the same stability threshold of
2 kcal/mol, Figure 6 indicates that, starting at present, 2019, the
mean time required to calculate a single protein variome is of
9.4 years, with half of the individual protein variomes needing
less than 5.5 years.

When should we begin to simulate the human variome if we
perform the simulations at 45◦C or at 65◦C?
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Figure 5. Estimated completion year versus start year profiles for the simulation of the entire t-HumanV. (A) Profiles calculated using different values of the fraction of

unfolded molecules observed in the simulations (i.e. different probabilities of observing unfolding events in a single rMD simulation): xunf, a protein stability threshold

of 2 kcal/mol, and a simulation temperature of 25◦C (298 K). (B) Profiles calculated at three different temperatures by setting xunf = 0.99 and a protein stability threshold

of 2 kcal/mol. Depicted error bands have been calculated by propagating the fitting errors obtained for the different parameters (see the standard errors of the fittings

in Figures 2 and 3) through Equation 7. The inserted table summarizes the optimal start years and time costs estimated for performing the required rMD simulations

of the t-HumanV at the indicated temperatures. Profiles in both panels were calculated taking TFlops in Equation 7 as the number of TFlops allocated in the top 10

supercomputers worldwide plus those in the project of distributed computing Folding@Home (606 826, see Table 3) and their future equivalence according to Moore’s law.

Table 3. Estimated time required to complete the simulation of the t-HumanV using the TFlops allocated in the Top Ten supercomputers
worldwide plus those in the distributed computing project Folding@Home, or the expected TFlops in equivalent computing infrastructures in
future years

Supercomputer ranking Supercomputer/project Rmax (TFlop/s) Start yeara Time required (years)a

1 Summit, DOE/SC/Oak Ridge National
Laboratory, USA

143 500 2019
2055b

814 757
3.1

2 Sierra, DOE/NNSA/LLNL, USA 94 640 2019
2056b

1 235 393
3.3

3 Sunway TaihuLight, National
Supercomputing Center in Wuxi, China

93 015 2019
2056b

1 902 801
3.4

4 Tianhe-2A, National Super Computer
Center in Guangzhou, China

61 445 2019
2058b

5 507 189
2.6

5 Piz Daint, Swiss National Supercomputing
Centre (CSCS), Switzerland

21 230 2019
2061b

5 799 773
2.6

6 Trinity, DOE/NNSA/LANL/SNL, USA 20 159 2019
2061b

5 881 167
2.8

7 AI Bridging Cloud Infrastructure, AIST,
Japan

19 880 2019
2061b

6 002 856
2.8

8 SuperMUC-NG, Leibniz Rechenzentrum,
Germany

19 477 2019
2061b

6 646 823
2.9

9 Titan, DOE/SC/Oak Ridge National
Laboratory, USA

17 590 2019
2061b

6 646 823
3.2

10 Sequoia, DOE/NNSA/LLNL, USA 17 173 2019
2061b

6 808 223
3.2

Distributed computing project Folding@Home, The Pande Lab, Stanford
University and Stanford University Medical
Center

98 747 2019
2056b

1 184 012
3.2

- Top 10 + Folding@Home 606 826 2019 192 671
2051b 2.9

aTime required to observe unfolding—0.99 probability—in single simulations at 25◦C of single molecules of unstable protein variants (stability below 2 kcal/mol).
bOptimal moment—providing the earliest completion date—to begin the simulation of the complete human variome (see also Figure 5) using the corresponding TFlops
calculated at that time as per Moore’s law.

Rate constants of protein (un)folding are temperature-
dependent. [173] The Eyring–Kramers equation

k = kBT
h

× e−
(

�G‡
RT

)
(8)

(where kB and h are Boltzmann’s and Planck’s constant, respec-
tively) indicates that such dependency is modulated by the
activation free-energy (�G‡), which can be determined experi-
mentally. Analysis of experimental data on the variation of the
unfolding rate constants of 11 proteins (ranging from 48 to 118
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Figure 6. Histogram of the real simulation times (in years) required to simulate

at present full individual protein variomes, calculated using Equation 7. The

calculation was done by setting a protein stability threshold of 2 kcal/mol and

a value of 0.99 for the probability of detecting that a particular SNV has lowered

the stability of the wild-type protein below that threshold (i.e. setting τxunf
= 14

ms), as well as a number of TFlops equivalent to those allocated together in the

top 10 supercomputers and the distributed computing project Folding@Home at

present (2019) (see Table 3). The red line represents the mean of the distribution

(9.4), and the navy blue one, the median (5.5).

amino acid residues) as a function of temperature (Supporting
Information Table S4) shows no correlation between the activa-
tion free energies of those proteins and their sizes (Supporting
Information Figure S3). Therefore, we have calculated from that
set of proteins an average activation free energy of unfolding of
82.5 ± 12.1 kJ/mol (�G‡ ± SD). Taking this value as an invariant,
Equation 9 indicates that kinetic constants of protein unfolding
(ku) become 8.7 times larger if the temperature is raised from 298
to 318 K, and 58.4 times larger if temperature is raised from 298
to 338 K.

k1

k2
= T1

T2
× e

(
�G‡
RT

)(
1

T2
− 1

T1

)
(9)

As a consequence, the time needed to have a 0.99 probability
of observing unfolding in a given rMD simulation performed at
298 K, as described by Equations 4 and 5, is reduced at 318 K
by a factor of 0.12 compared to that at 298 K and, at 338 K, by
a factor of 0.017. As it seems, modest increases of simulation
temperature can greatly reduce the computer time needed and
bring the optimal moment when the simulation of the entire
variome should be initiated significantly closer to present. The
table inserted in Figure 5B summarizes the optimal start year for
the simulation of the HumanV and the time cost at that point
for the three simulation temperatures here discussed. While
simulations at 25◦C (298 K) should begin in 2051 and last for
2.9 years, those at 45◦C (318 K) should begin in 2044 (lasting for
3.3 years), and those at 65◦C (338 K) should begin in 2031 and
could be completed in 3.0 years.

As indicated above, the cost of simulating a single protein
variome is much lower and, starting at present, 2019, the mean
time required to simulate a single protein variome at 45◦C would
be of 1.2 years and, at 65◦C, of just 2 months. The simulation of
individual protein variomes at temperatures close to the phys-
iological one is already feasible, and that of the entire human
variome will become feasible in few years. Having a reliable
assessment of the structural impact of any single-amino-acid
variation arising in the human proteome ready may greatly

contribute to increase the accuracy of genetic interpretation of
human SNV.

Conclusions
The continuous improvement of current MEPT based on
evolutionary information and simple assessment of physical–
chemical properties of amino acid residues appears not to be
reaching the level of accuracy required for their generalized use
in medical diagnosis. The exploration of alternative methods
that fully analyze the impact of variations on protein structure,
stability and binding, such as those using MD simulations,
may provide the more accurate predictive tools in need. We
have developed a simple model that allows to estimate the
time needed to perform a predictive MD analysis of the entire
human variome (here defined as all possible protein variants
carrying a single-amino-acid replacement arising from a SNV
in the corresponding coding sequence) with existing computing
capabilities. Our model indicates that the structural impact of
all human SAVs should begin to be assessed around 2031 and
they could be completed by 2034 using explicit-solvent full-atom
rMD simulations performed at a moderate temperature (65◦C).
On the other hand, full variomes of individual proteins can be
already analyzed at present, even at a lower temperature, closer
to the physiological one.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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Key Points
• Obtaining genetic information describing variations

in patients and healthy individuals has become easy
and cheap, yet its accurate interpretation is still an
unattained goal.

• Bioinformatics tools for genetic interpretation appear
to have reached a maximum accuracy of around 85%
in the binary interpretation of nsSNV in protein coding
regions as deleterious or neutral, which is not sufficient
for them to be trusted by clinicians.

• Full-atom molecular dynamics (MD) simulation of pro-
teins carrying SAV offers good prospects of providing
the extra accuracy needed, but this technique is slow,
and its potential for massive interpretation of SAV at
proteome scale needs to be appraised.

• We calculate here the size of the human nsSNV space
(human Variome) at 66 474 822 protein variations and
develop a physical model to determine the MD sim-
ulation time span required to have a high probability
of observing unfolding of the unstable variants, a key
datum enabling the use of MD simulations as binary
predictors of protein stability.

• According to our model, an international effort initiated
around 2031 could complete the MD simulation of the
human Variome in 3 years, providing an accurate binary
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classification (destabilizing/not destabilizing) of all pos-
sible nsSNVs. For a single human protein of average
size, it could be done at present in few months.
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